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Abstract: In recent years, high-resolution traffic signal event data has provided valuable insights into understanding and managing con-
gestion at signalized intersections. While existing applications primarily employ automated traffic signal performance monitoring (ATSPM)
systems as postanalysis tools for identifying everyday congestion causes, traffic engineers are increasingly overwhelmed by the number of
ATSPM-capable intersections. The workload increases extensively as the number of ATSPM-capable intersections rises mainly due to the
necessity of manually checking and generating performance figures. Nonetheless, an advanced ATSPM system capable of automatically
detecting time-of-day congestion bottlenecks among multiple intersections and suggesting “top intersections of interest” would significantly
aid traffic managers in monitoring historical congestion and preventing future congestion occurrences. This paper introduces an efficient
graphical automated congestion ranking method for capable intersections, leveraging high-resolution traffic signal event data as the basis for
automated congestion ranking. To accomplish these objectives, we build upon ATSPM concepts by continuously generating ATSPM mea-
sures of effectiveness (MOEs). Utilizing continuously generated ATSPM performance measures in Frisco, Texas, over several months, we
devise an efficient graphical method for ranking hourly congestion levels among the studied ATSPM-capable intersections. All intersections
are assessed and ranked using a multiobjective optimization technique, the Pareto front method. The points on the Pareto front represent
dominating intersections with at least one inferior performance measurement, warranting prioritized improvement. The dominating points
identified from the test dataset were validated and further explained using Purdue coordination diagrams (PCD), along with another individual
dataset—Wejo-connected vehicle data. The outcomes of this approach have proven the validity of the method. DOI: 10.1061/JTEPBS.
TEENG-8083. © 2024 American Society of Civil Engineers.
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Introduction

Congestion is characterized by reduced travel speeds, extended
vehicle queuing, and increased travel times. Over the past half-
century, urban traffic congestion has grown significantly. Accord-
ing to INRIX Inc.’s 2021 congestion report (Pishue 2021), New
York City ranked as the fifth most congested urban center globally
and the first in the United States. Each driver in NYC lost 102 h in
congestion. In Los Angeles, the I-5 South corridor from Euclid Ave
to I-605 was the most congested in the United States, with peak
hour delays of 22 min and accumulated to 89 h lost per driver in
2021. In 2019, the United States squandered 3.5 billion gallons of
fuel and $190 billion, as reported by the Texas A&M Transporta-
tion Institute’s 2021 Urban Mobility Report (David Schrank

et al. 2021). Consequently, the U.S. Department of Transportation
(USDOT) recognizes transportation system congestion as a signifi-
cant threat to both the economic prosperity and the quality of life
in the United States.

Intersections significantly contribute to congestion in urban
areas, and congestion at intersections directly results from ever-
increasing traffic demand. The most prevalent strategies to mitigate
this issue include enhancing the intersection’s capacity and improv-
ing traffic signal management; the key to increasing the capacity at
intersections is controlling and managing conflicts between turning
movements, and the newly proposed unconventional intersection
design, exit lanes for left turns (EFL), is found to be effective in
increasing intersection capacity, Zhao et al. (2019) proposed satu-
ration rate adjustment models that resulted in a noteworthy 16%
reduction in flow rate in demand starvation and lane changing sce-
narios, thereby substantiating the design’s effectiveness. However,
it is important to note that changing the physical geometry of
existing intersections is not usually a feasible solution due to space
constraints and infrastructure costs in built-up urban areas. Conse-
quently, traffic signal management, which involves providing opti-
mized signal timing plans, has become a more commonly adopted
strategy to increase intersection capacity. Among various arterial
traffic management efforts, the automated traffic signal performance
monitoring (ATSPM) system has emerged as one of the most suc-
cessful applications. The ATSPM system generates a series of novel
signal performance measures of effectiveness (MOE) based on traf-
fic signal events from traffic signal controllers. Consequently, an
increasing number of agencies have adopted the ATSPM system.
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Although the ATSPM system can provide insights into congestion
causes, aggregating and visualizing the ATSPM MOEs is relatively
slow. This limitation becomes more pronounced when examining
MOEs for city-wide ATSPM-capable intersections, which can be
excessively time-consuming for routine activities. This issue also
hinders traffic managers from promptly identifying and mitigating
unusual congestion.

The existing congestion measurement methods can be broadly
categorized into mobility measures and reliability measures. Mobil-
ity measures encompass various indicators, such as travel delay,
volume-to-capacity ratio (V=C ratio), level of service (Barcelö et al.),
and the travel time index. The travel time index is defined as the
average peak travel time ratio to the off-peak standard travel time.
On the other hand, reliability measures include the buffer index,
which represents the additional time required to ensure on-time
arrival for most trips, and the planning time index, which is statisti-
cally defined as the 95th percentile of the travel time index. The
planning time index reflects the extra time most travelers allocate
when planning trips during peak periods. For example, a value of
1.60 indicates that travelers plan for an additional 60% travel time
above the off-peak travel times to ensure a 95% on-time arrival
rate. It is important to note that these methods are better suited
for assessing congestion on freeways, where data records are often
available in large volumes. However, applying these methods to
measure congestion at intersections is challenging. Predominant
methods, such as level of service, average delay, and queue length,
require calibrated advanced detectors and stop bar detector loca-
tions to accurately capture vehicle arrival and departure profiles
(Sharma et al. 2007). However, finding the optimal sensor place-
ment is challenging, as it varies from site to site and several other
parameters, like storage capacity per lane at the intersection, sat-
uration headway, and queue clearance headway, must be mea-
sured. These parameters are not standard for ATSPM setup and
require extensive manual collection, which can be burdensome
when managing hundreds or even thousands of intersections.

The commercial market offers a range of software solutions
for identifying coordination and signal timing issues in traffic man-
agement. Among these, Q-free’s Kinetic Signals is built upon the
MAXVIEW advanced traffic management system (Q-Free 2023).
This system is designed to control and adjust traffic signals in con-
junction with real-time intelligent transport system (ITS) operations.
Kinetic Signals provides a real-time map for managing signalized
intersections, offering detailed operational information, including
device statuses and measurements. The platform also features a sys-
tem for collecting and reporting high-resolution signal events that
integrates ATSPM, graphical data, and usage charts for analysis.
TranSync (TransIntelligence 2023), another solution in this field,
focuses on the diagnosis and optimization of signal timing. It aims
to systematically manage, optimize, and evaluate traffic signal tim-
ing plans. TranSync-M, its mobile version, comprises a virtual con-
troller, dynamic time-space diagram, signal timing editor, and
trajectory recorder. This enables real-world programmed signal tim-
ings to create detailed visualizations of signal coordination plans.
Additionally, TranSync allows users to record their GPS location
and trajectory data in real time, facilitating the combination of
before-and-after video clips for comprehensive analysis. While both
MAXTIME Kinetic Signals and TranSync are mature and powerful
tools, they still fall short of automation. Given that cities or counties
can manage hundreds of intersections, the efforts in manual visuali-
zation and analysis based on the ATSPM data can be excessively
complicated and time-consuming. As a result, many agencies ex-
pressed a need for a more streamlined approach to exploiting the
ATSPM’s potential: one that incorporates a ranking method based

on ATSPM data. This would allow engineers to automatically pin-
point intersections that warrant further investigation on a daily basis.

To address these challenges, an automated congestion ranking
framework grounded in ATSPM concepts is developed to pinpoint
time-of-day mobility bottlenecks on arterials. The ranking results
offer decision support for traffic managers, allowing them to iden-
tify the latest bottlenecks among hundreds or even thousands of
intersections and promptly provide solutions. The remainder of this
paper is structured as follows: literature review, data preparation,
methodology description, and case studies.

Literature Review

Traffic congestion, experienced by road users as stops or slow
movements on freeways, suburban highways, or city streets, occurs
when (1) the road system is unable to accommodate travel demand,
and (2) traffic control at intersections is improperly configured.
Traditional congestion measures include travel time, delay, and
speed, while other measures such as travel rates, delay ratios,
mobility index, congested travel, and accessibility also exist. Con-
gestion can be described by four attributes: duration, extent, inten-
sity, and reliability. Duration is defined as the amount of time
congestion affects the mobility of the system; extent is described
by the number of people or vehicles affected by congestion; inten-
sity reflects the severity of the congestion that affects travel, it is
used to differentiate between levels of congestion, and reliability is
the impact of nonrecurrent congestion on the transportation system
such as congestion caused by weather and accidents.

Traffic congestion at intersections can occur due to various rea-
sons. One common cause is excessive demand beyond the intersec-
tion capacity. Another cause is due to inferior traffic signal systems,
such as out-of-date timing plans and/or broken detectors. Another
cause is the problematic intersection geometry designs that offer
insufficient lanes to accommodate demand. Nonrecurring bottle-
necks like obstructed or blocked lanes by accidents or work zones
also contribute to congestion at intersections. Once a problematic
intersection is identified, there are multiple practical approaches to
improvement like optimizing traffic signal timings, implementing
new ITS solutions, or redesigning the intersection layout. Nonethe-
less, it is challenging to identify those intersections in need of im-
mediate congestion alleviation among hundreds or even thousands
of candidates managed by agencies.

In practice, complaints from nearby residents have become a
de facto benchmark to identify problematic intersections. There
are plenty of broadly accepted performance data collecting meth-
ods, including but not limited to the Wi-Fi/Bluetooth MAC readers
(Abbott-Jard et al. 2013; Barcelö et al. 2010), Sensys Networks
reidentification sensors (Pitton et al. 2012), and personal probe
device traffic data collection [e.g., INRIX (Pishue 2021)]. Nonethe-
less, these solutions are effective at the corridor level but may not
be reliably effective at individual intersections. ATSPM is a state-
of-the-art traffic signal monitoring concept. It refers to a collection
of data analytics tools and approaches that automatically collect
and convert high-resolution traffic controller event data into action-
able performance measures. Most deployed ATSPM can continu-
ously collect and generate high-resolution signal performance
measures on capable approaches of intersections and is becoming
a regular tool among agencies today.

The evolution of signal performance measures can be divided
into two stages: In the first stage, performance measures primarily
relied on manual data collection or semiautomation, requiring
many time-consuming processes. Performance metrics varied
among systems and were constrained in scope and granularity.
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During this era, straightforward measures such as vehicle delays,
queue lengths, and green time usage were the research focus. Balke
and Herrick (2004) proposed using average cycle time, average
phase duration, average wait time before serving a call, and the
average proportion of green used to serve a queue to measure signal
efficacy. Expanded from this research, Balke et al. (2005) further
developed the Performance Measure Report Generator (PMRG) to
automatically collect signal events and generate reports based on
signal performance data.

In 2007, Smaglik et al. from Purdue University developed a
data collection module for NEMA traffic controllers, enabling quan-
titative assessment of progression and intersection delay (Smaglik
et al. 2007). This work was a milestone of the ATSPM development
and formed the foundation of today’s ATSPM systems. Sub-
sequently, Day et al. presented performance measures for evaluating
operations (Day et al. 2008), such as phase-based arrival versus
greenwindow, split failure plot, and time-of-day volume-to-capacity
ratio plot. Liu and Ma developed SMART-SIGNAL, a system for
real-time high-resolution traffic signal data collection and perfor-
mance measure generation based on probe vehicle trajectories
and signal data (Liu and Ma 2009). Brennan Jr.et al. further devel-
oped visualization techniques for intersection coordination, such as
time-of-day schedule change time, cycle length, preemption, and
queuing analysis (Brennan et al. 2011). Indiana Department of
Transportation and Purdue University built upon Smaglik et al.’s
work and published the Indiana Traffic Signal Hi-Resolution Data
Logger standard (Sturdevant et al. 2012). Grossman et al. deployed
the first commercial ATSPM solution in Indiana (Grossman and
Bullock 2013). Day et al. discussed methodologies for data collec-
tion and introduced various performancemeasures (Day et al. 2014).
Day et al. published a report that provided resources for agencies
developing active traffic management programs (Day et al. 2016).
Following the Traffic Signal Systems Operations & Management
pool fund study in the same year, UDOT released its open-source
ATSPM system (US DOT 2018), which is widely used today.
Remias et al. implemented multiple ATSPM systems including
UDOT’s ATSPM software on 11 signals at US 36 (Pendleton Pike)
in Indianapolis, Indiana, demonstrating the full capacity of using
ATSPM systems with high-resolution signal event data performing
capacity, signal progression, multimodal (pedestrian, preemption
and priority), and maintenance performance measures. (Remias
et al. 2018). Jin et al. enabled ATSPM measurements for nonhigh-
resolution signal controllers and historical signal event records
from InSync and SCATS systems (Jin et al. 2019). Li et al. pro-
posed a framework combining real-time LOS and probe vehicle
data with ATSPM systems (Li et al. 2020). The proposed frame-
work introduces a novel diagram that incorporates ATSPM data
from multiple intersections to enable corridor-level monitoring
with two additional performance measures designed: arrival on
coordination (AOC) and band attainability (BA) to measure the
signal coordination quality.

Pareto Front∶ In the realm of resource allocation and economic
efficiency, the concept of the Pareto front originates in the work of
Italian economist Vilfredo Pareto, who initially introduced the idea
of Pareto optimality. Over time, the Pareto front—also known as
the Pareto frontier—has become an essential tool for multiobjective
optimization and decision making. American mathematician and
economist Kenneth Arrow and French economist Gérard Debreu
made significant advancements in developing the Pareto front con-
cept. In their seminal paper, Arrow and Debreu applied Pareto op-
timality to general equilibrium theory, proving the existence of
Pareto optimal allocations in a competitive economy (Arrow and
Debreu 1954). Ngatchou et al. discussed the fundamentals of
multiobjective optimization and different solution approaches to

generating the Pareto front (Ngatchou et al. 2005). In the context
of multiobjective optimization, each potential solution is assessed
according to its performance across multiple objectives. A solution
is deemed Pareto optimal if no other solution can enhance one of
the objectives without concurrently worsening at least one other
objective. Put differently, a Pareto optimal solution cannot be out-
performed (also known as dominated) by any other solution whose
objective measures are all better than the Pareto optimum. In a
graphical representation of a two-objective optimization problem,
the Pareto front can be visualized as an envelope curve or a set of
points in the objective space, where one axis represents one objec-
tive, and the other axis represents the other objective. Each point on
the Pareto front represents a solution that is not dominated by any
other solution in terms of the objectives being considered.

Pareto front analysis is widely utilized within the transportation
research community. Abbas and Sharma employed a multiobjec-
tive nondominated sorting algorithm to determine the Pareto front
across three objective optimizations: delay, stops, and degree of
detachment (DoD) (Abbas and Sharma 2006). They subsequently
created an optimal timing plan based on the Pareto front. Jiao et al.
implemented a Pareto front-based multiobjective real-time traffic
signal control model for intersections (Jiao et al. 2016). The results
illustrated that their proposed method surpassed the performance
of the existing multiobjective traffic control model that consolidates
several objectives into a single target of weighted summation.
Chellapilla et al. introduced innovative bilevel mathematical pro-
gramming models and solved through Pareto front analysis, ensur-
ing system optimality and minimizing congestion on overly utilized
links while considering user needs as constraints (Chellapilla
et al. 2023).

Methodology and ATSPM Data Aggregation

This paper aims to assist agencies in ranking intersection conges-
tion utilizing historical MOE data, thereby identifying the most
problematic intersections without the need to visualize the perfor-
mance measures for each. The proposed methodology will enable
agencies to swiftly identify spatial and temporal aspects of under-
performing intersections or approaches. Traffic managers can uti-
lize their ATSPM systems for in-depth analysis of these congested
intersections, aiding in informed decision making. Fig. 1 illustrates
the framework of the proposed method. The left section, Fig. 1(a),
outlines the workflow, encompassing automated Steps 1 to 6.
Step 7, highlighted with a dashed line, varies in automation depend-
ing on the ATSPM system in use. In the experiment of this paper,
the UTA-in-motion ATSPM system facilitates fully automated plot-
ting of coordinate diagrams (PCDs). In contrast, with the UDOT
ATSPM system, this process would require manual intervention.
Fig. 1(b) presents a logical chart from Steps 2 to 6, elucidating
the method’s decision process.

By default, the prevalent open-source and commercial ATSPM
systems in the market save high-resolution signal control events
(i.e., raw data) periodically. The ATSPM MOEs are not automati-
cally generated but on users’ requests. The ATSPM MOEs are the
building blocks of the automated congestion ranking and generat-
ing them for all intersections will take a long time. Therefore, gen-
erating the ATSPM MOEs continuously rather than upon the user’s
request is critical to ensure the needed time for automated conges-
tion ranking is acceptable. The details of the whole process are as
follows:
• Step 1: Develop an add-on ATSPMmodule to automatically gen-

erate ATSPMMOEs on all possible approaches at a 5-min inter-
val, the selected MOEs include arrival-on-green (AOG), AOC,
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green-time-percentage (GT), vehicle arrival counts (veh_arr), the
number of pedestrian’s crossing quests (ped_button), TOD plan
transition (plan_change), and day of the week (DOW).

• Step 2, The generated 5-min MOEs can be further aggregated to
various time intervals. In this paper, we transfer 5-min MOEs to
1-h MOEs.

• Step 3: This paper incorporates the min-max normalization tech-
nique to mitigate the issue of disadvantaged off-peak and low-
performance side streets due to the low vehicle arrival rates in
the Pareto front analysis. This approach transforms the vehicle
arrival numbers into a standardized scale from 0 to 1. The mini-
mum and maximum values used for this normalization are de-
rived from historical arrival data encompassing the entire testing
scope and are specific to the selected time range. These normal-
ized values are then used as an adjustment factor in the sub-
sequent analysis.

• Step 4: Aggregate the MOEs according to the DOW within the
same month, the hour of day, and signal phases. For instance,
the aggregated ATSPM MOEs from 7:00 AM to 8:00 AM on
Mondays in November of 2021 were calculated as the average
of the MOEs on five Mondays in that month. A vehicle adjust-
ment factor Y will then be multiplied to such aggregated MOEs
for further Pareto front analysis.

• Step 5: Pareto front analysis: three selected ATSPM MOEs are
arrival-on-green (AOG), AOC, and GT. These MOEs are di-
rectly associated with signal timing and represent intersection
congestion conditions. To obtain adjusted AOG, AOC, and GT,
we multiply these MOEs by the normalization factor (Y) de-
rived in Step 4. After conducting the Pareto front analysis, we
obtain the data points on the Pareto front that represent the worst
traffic conditions with respect to time periods, locations, and
approaches.

• Step 6: Inform traffic managers to generate ATSPM diagrams to
identify the congestion and its causes based on Pareto sets from
the last step. Some mitigation measures will be taken to prevent
similar congestion in the future if necessary.

ATSPM MOE Aggregation

Traffic signal events data are a set of time-stamped records contain-
ing number-encoded event types and event indexes. For example,
the Indiana Traffic Signal Hi-Resolution Data Logger Enumeration
guideline defines event number 7 as termination of a green phase
and the following event index represents signal phase ID. The sig-
nal events’ time stamps are in a 10 Hz frequency of 0.1 s. The origi-
nal traffic signal events must be aggregated to MOEs to become
actionable, such as arrival-on-green (AOG), AOC, and GT, arrival
on red (AOR) and not-AOC (NAOC). The definitions of AOG,
AOC, AOR, GT, and NAOC are as follows:

AOG ¼ vgt
Vt

ð1Þ

AOR ¼ 1 − AOG ð2Þ

AOC ¼ vct
Vt

ð3Þ

NAOC ¼ 1 − AOC ð4Þ

GT ¼ gt
t

ð5Þ

where vgt = vehicle arrivals during green within time interval t; Vt =
total vehicle arrival during time interval t; vct = vehicle arrivals
within the coordinated green band during t; and gt = accumulated
green time during t.

In the automated MOE aggregation module, the default time
interval is 5 min. It is configured this way for three reasons: first,
the cycle lengths of coordinated traffic signal timing typically range
between 60 and 180 s and 300 s ensure covering at least one com-
plete cycle. Second, the signal events collected within 5 min can be
processed quickly. Third, a 5-min time interval represents the short-
est period of agencies’ interest and the 5-min MOEs can be further
aggregated to longer periods as per agencies’ request as follows:

MOET ¼
P

T
t¼1;2;:: MOEtP

T
ð6Þ

where T = number of 5-min intervals; MOET = aggregated MOE
(AOG, AOR, AOC, NAOC, and GT) within 5 × T min (e.g., T ¼ 2
means a 10-min interval); MOEt = MOE of the tth 5 min.

Pareto Front Construction

Pareto dominance is a method of multiobjective optimization to
identify nondominated solutions that represent the most favorable
trade-offs between multiple competing objectives. The Pareto front
comprises the set of all nondominated solutions. A solution is on
the Pareto front if there is no other solution that is better for all
objectives. This approach is widely employed in engineering,
planning, and decision making processes, where the objective is
to discover the most balanced solutions among several objectives,
which may be subject to either minimization or maximization. To
determine the Pareto front for a two-objective problem, consider
two solutions ðX1; Y1Þ and ðX2;Y2Þ in a maximization scenario.
If X1 >¼ X2 and Y1 >¼ Y2, then ðX1; Y1Þ “dominates” ðX2;Y2Þ
in terms of both objectives. Conversely, in a minimization problem,
ðX2; Y2Þ “dominate” ðX1; Y1Þ. The search iterates until no more
dominating point can be found. Those dominating points are com-
posed of the Pareto front.

Fig. 1. Automated congestion ranking framework using ATSPM data:
(a) flow chart; and (b) logical relationship.
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Ranking Score Calculation

Ranking dominating points is performed by calculating the ranking
score as in Eq. (7):

Rscore ¼ Ascore þ Bscore ð7Þ

Ascore and Bscore = considered parameters in the Pareto front
analysis. For example, if we wish to identify the Pareto front
searching with respect to the arrival-on-red value or Ascore and the
red-time percentage value ð1 −GTÞ, or Bscore as a maximization
problem. The data point with the highest Rscore represents the most
congested scenario in which most vehicles arrive on red and stop
because the red time lasts long.

Scenario Design

Three scenarios are selected according to agencies’ various needs:
The first scenario is to examine the relationship between AOR and
GT maximization to identify the occasions when an intersection
reports most vehicles arrived during red despite of long allocated
green time. Unbalanced green allocations will likely cause this
phenomenon.

The second scenario aims to discover the Pareto front with re-
spect to the vehicle arrivals on green but not the result of co-
ordination (not-AOC) or NAOC and vehicle AOR. We seek to
identify occasions when a poorly coordinated timing plan causes
most upstream vehicles to arrive at the downstream intersection
too early or too late.

The third scenario is to discover the Pareto front concerning
NAOC and GT. The target occasions are when an intersection is
allocated with excessively long green time while many vehicles ar-
rive before or after the green band (i.e., they indeed arrive on green
at the downstream intersection, but it is not due to effective signal
coordination).

In all the presented three scenarios, the dominating occasions
with the worst ranking score are identified in which heavy conges-
tion occurred because of various traffic signal timing problems.
Once the worst scenarios are identified, full-scale visualizations
of ATSPM MOEs of the corresponding scenarios should be per-
formed for agencies to find valid reasons for congestions.

Note that, other than the traffic signal problems, accommoda-
tions for special traffic signal operations like preemption or transit
signal priority can also cause heavy delays. The signal timing prob-
lems can be easily observed from a fully populated visualization
of ATSPM MOEs.

The algorithm for constructing the Pareto Front can be as
follows:

Algorithm. Identify dominated solutions as maximize problem
using Pareto front
Data: X the value set of target variable A; Y the value set of target
variable B; W is a list of tuples where each tuple is represented by
ðXi;YiÞ; Z is a dominant list, contains identified Pareto front
points.
Results: For finding Pareto in front of target variables A and B.
Initialize the empty list Z for dominant points,
Initialize the sorting list W in ascending order based on the value
ðX 0;Y 0Þ.

For Xi in the range of all points of variable A:
Do Save the first point X 0;Y 0to list Z,
Set ‘is dominant’ flag to False,
For each point ðX 0;Y 0Þin list W:

ifX 0 ≤ Xi and Y 0 ≤ Yi:
Set ‘is dominant’ True.
Do save ðX 0;Y 0Þ to dominant list Z.
Break

IfX 0 ≤ XiandY 0 ≤ Yi:
Set ‘is dominant’ False.
Do remove ðXi;YiÞ from list W.

End
End

Case study: Using ATSPM to Identify Arterial
Bottleneck Pattern and Causes on Preston Road in
Frisco, Texas

Data Preparation

The authors retrieved two months of traffic signal logs from five
intersections along Preston Road in Frisco, TX, from October to
November 2021 and aggregated them into the proposed ATSPM
MOEs on all available approaches every 5 min. In total,
351,600 5-min ATSPM MOEs were generated. After transforming
to hourly MOEs, 5,655 hourly ATSPM MOE records were ob-
tained. Fig. 2 shows the locations of the intersections. Intersections
670, 673, 675, and 680 are along the Preston Road, and Intersection
639 is next to a large high-rise shopping mall. Fig. 3(b) illustrates
that traffic volumes passing through Intersections 680 and 639 are
greater during weekends than on weekdays.

Based on the preliminary data analysis, ATSPM data for Phase 2
at Intersection 639 were preexcluded from the case study because

Fig. 2. Scope of study in Frisco, TX. (Google Map Data © 2023.)

© ASCE 04024017-5 J. Transp. Eng., Part A: Systems

J. Transp. Eng., Part A: Systems, 2024, 150(5): 04024017



of its malfunctioning detectors during the study period. Phase 4 of
Intersection 670 and Phase 4 at Intersection 673 were also excluded
because the vehicle arrivals were unrealistically low, possibly
caused by intermittent detector errors or network connection errors.
It was also found that some AOCMOEs had zero values because of
intermittent detector malfunctions at upstream and/or downstream
intersections. Zero AOC values (i.e., seemingly rather poor signal
coordination) may bring significant bias to the congestion scenario
ranking. As such, whenever a zero AOC value is identified, the
algorithm automatically excludes that scenario from being consid-
ered as dominating or a candidate for the worse scenario.

To analyze the traffic volume pattern on Preston Road,
Intersection 675—the central intersection—was chosen for a time-
of-day traffic counts analysis. Based on Fig. 3(a), three distinct
peaks were identified. The morning peak runs from 7 AM to 8 AM,
recording 565 vehicles per hour per lane. The midday peak is from
11 AM to 1 PM with a volume of 704 vehicles per hour per lane.
Lastly, the evening peak starts at 5:00 PM and concludes at
6:00 PM, noting 713 vehicles per hour per lane. The traffic between
the morning and evening peaks predominantly reflects regular
commuters to work and school, while the midday peak is due to
the commercial activities near that area, based on Fig. 3(b), the
midday peak counts are observed much higher during the weekend
than weekdays. These peak hours are utilized in Experiments II
and III.

Experiment I: Identifying the Most Congested Hour of
All Times among All Intersections

This experiment aims to better inform agencies when and where
traffic is the most congested by identifying the most congested time
of day, month, intersection, and phase. So, the agencies can allocate
more resources for congestion reduction. We first analyzed the
hourly aggregated MOEs on all approaches at all intersections
to determine which intersection historically exhibited the poorest
performance on average according to the ATSPM dataset. Each re-
cord is indexed with the hour of the day, the associated phase num-
ber, and the intersection ID. Each record was averaged with
multiple weeks over 2 months of ATSPM data and MOEs.

Fig. 4 presents three 2-D Pareto fronts and a 3-D Pareto surface
for the GT, AOR, and NAOC MOEs respectively. The red lines in
Figs. 4(a–c) represent the Pareto fronts on which those dominating
intersections (with at least one worst mobility performance) reside
and the top-ranked Pareto front point is circled in red for each
Pareto analysis. The black solid line in Figs. 4(a and c) delimit

between actual positive AOC data, containing zero values, and
the adjusted AOC values to address the missing data issue. As
discussed, the adjusted NAOC values are therefore consistently
negative to ensure those intersections with data missed could not
become dominating (i.e., worst) intersections.

Table 1 displays the top three results from each Pareto front de-
picted in Fig. 4. To validate the ranking results, a complete ATSPM
diagram (the “ground truth”) is generated to confirm if the identi-
fied bottleneck exists. For the sake of brevity, the ATSPM plot for
the highest-ranked Pareto point is included; this can be found in
Fig. 5.

From the Pareto Frontier in Fig. 4, three time-dependent bottle-
necks were selected for verification:
1. Phase 4 at Intersection 639 from 1:00 PM to 2:00 PM on

Saturdays in November 2021 with low AOC rates.
2. Phase 2 at Intersection 670 from 8:00 AM to 9:00 AM on

Tuesdays in November 2021, experiencing excessive AOR.
3. Phase 8 at Intersection 680 from 3:00 PM to 4:00 PM on

Sundays in November 2021 has a high number of vehicles
on red and not arriving on coordination.
The identified bottlenecks were verified with fully populated

ATSPM MOE diagrams on selected dates. For the first identified
bottleneck, Fig. 5(a) reveals two preemption calls from two direc-
tions, disrupting the coordination plan and leading to a decrease in
vehicles arriving during coordination. This implies that frequent
traffic signal operations may have caused the bottleneck; Fig. 5(b)
indicates quite a few vehicles arriving during the red time, and a
preemption call is observed on Phase 4 that interrupted the pro-
grammed coordination plan; Fig. 5(c) displays another dominating
road approach at Intersection 680 that was identified in Fig. 4(c).
The ATSPM plot reveals that most vehicles arriving during the red
on that phase and two preemption events exacerbate the situation.
This implies that Intersection 680 may need to be retimed with
clock-based coordination.

Experiment II: Identifying the Dominating Roach
Approaches Having Bottlenecks during Weekday
Peak Hours

In this experiment, ATSPM records were chosen explicitly from
Monday to Friday during the morning peak hours (8 AM–10 AM),
midday peak hours (11 AM–1 PM), and evening peak hours
(6 PM–8 PM). In Fig. 6, the line located in the top-right corner
illustrates the Pareto fronts under three different conditions, along
with the top-ranked points, which are denoted by circles positioned

Fig. 3. Time-of-day traffic count plot: (a) weekday Preston Road volume at 675; and (b) weekday and weekend side street volume comparison at 680.
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in the same top-right area. Table 2 presents the top three dominating
approaches from each 2-D Pareto front, and three time-dependent
bottlenecks were selected for verification:
1. Phase 2 at Intersection 675 from 6:00 PM to 7:00 PM on Friday

in November 2021 with low AOC rates.

2. Phase 2 at Intersection 670 from 8:00 AM to 9:00 AM on
Tuesdays in November 2021, experiencing excessive AOR.

3. Phase 8 at Intersection 680 from 11:00 AM to 12:00 AM on
Monday in November 2021 has a high number of vehicles in
red and arriving before or after the coordination.

Fig. 4. Pareto front result for Case I: (a) GT and NAOC; (b) GT and AOR; (c) AOR and NAOC; and (d) 3D Pareto plane visualization.

Table 1. Final ranking results for Experiment I

INT Phase Time Arrival GT AOR AOC Fig. ID Rank

639 4 Nov Sat 1:00 PM–2:00 PM 883 0.339 0.421 0.005 4-a 1
639 4 Oct Sat 1:00 PM–2:00 PM 905 0.318 0.417 0.018 4-a 2
675 2 Nov Fri 6:00 PM–7:00 PM 940 0.617 0.162 0.386 4-a 3
670 2 Nov Tue 8:00 AM–9:00 AM 944 0.578 0.289 1.036 4-b 1
670 2 Nov Mon 7:00 AM–8:00 AM 936 0.547 0.316 1.027 4-b 2
670 2 Nov Mon 8:00 AM–9:00 AM 935 0.548 0.314 1.027 4-b 3
680 8 Nov Mon 3:00 PM–4:00 PM 783 0.137 0.601 0.004 4-c 1
680 8 Nov Mon 12:00 PM–1:00 PM 746 0.115 0.618 0.010 4-c 2
639 4 Nov Sat 3:00 PM–4:00 PM 878 0.304 0.444 0.002 4-c 3

Note: GT, AOR, and AOC shown are weighted numbers. Bold values indicate which two parameters are employed to compute the ranking score.
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Three generated PCDs are displayed in Fig. 7 to help researchers
identify the underlying problem at the bottleneck’s periods.

Fig. 7(a) demonstrates a bottleneck during Phase 2 at Intersec-
tion 675 on Friday evening peak times. Based on PCD analysis, a
preemption in Phase 4 was detected. This interruption affected the
coordination and notably reduced the AOC. Fig. 7(b) illustrates that
during Phase 2 at Intersection 670, there may be bottlenecks on
Tuesdays in November 2021 between 8:00 AM and 9:00 AM.
Despite adequate green time, many vehicles arrive during the red
phase. PCD analysis confirms a significant number of vehicles ar-
riving during this red phase in the morning peak, indicating a po-
tential need to adjust the coordination plan. Meanwhile, Fig. 7(c)
highlights Phase 8 of Intersection 680 on a Monday in November
2021, between 11:00 AM and 12:00 PM. Many vehicles arrive
during the red phase, unable to align with the coordination plan.
The PCD indicates that preemption and a shortened green time

are likely causes, suggesting a reoptimization of the traffic signal
timings is necessary.

Experiment III: Identifying Dominating Intersections
Having Bottlenecks during Weekday Peak Hours

In this experiment, the focus remained on weekday peak hour data,
while it was no longer concentrated on individual phases at a single
intersection. Instead, the MOEs were calculated by averaging all
phases together, allowing the mean MOE to represent the overall
intersection signal performance during weekday peak hours. Data
points were selected from weekdays (Monday to Friday) and within
the AM peak hours (8 AM–10 AM), Midday peak hours (11 AM–
1 PM) and PM peak hours (6 PM–8 PM). Fig. 8 presents three 2-D
Pareto fronts with the top-ranked point circled in red, and Table 3
elaborates on three of the most dominant intersections from each

Fig. 5. PCDs for verifying dominating points in Case I: (a) GT versus AOC; (b) GT versus AOR; and (c) AOR versus AOC.
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front. These three top-ranked scenarios from the Pareto front are
then incorporated into the ATSPM to produce PCDs, as illustrated
in Fig. 9.

Fig. 9(a) reveals a bottleneck at Intersection 639 on Fridays in
November 2021, where numerous vehicles failed to capture the

green band between 6:00 PM and 7:00 PM. Based on PCD, the
researchers identified most vehicle arrivals during the red with a
37.3% AOC rate. Fig. 9(b) illustrates potential bottlenecks at Inter-
section 675 on Fridays in November 2021, occurring between
12:00 and 1:00 PM. A preemption event disrupted the existing

Fig. 6. Pareto front result for Case II: (a) GT and NAOC; (b) GT and AOR; (c)AOR and NAOC; and (d) 3D Pareto plane visualization.

Table 2. Final ranking results for Experiment II

INT Phase Time Arrival GT AOR AOC Fig. ID Rank

675 2 Nov Fri 6:00 PM–7:00 PM 940 0.617 0.162 0.386 6-a 1
673 6 Nov Fri 5:00 PM–6:00 PM 844 0.744 0.046 0.497 6-a 2
675 2 Nov Fri 11:00 AM–12:00 PM 891 0.470 0.332 0.290 6-a 3
670 2 Nov Tue 8:00 AM–9:00 AM 944 0.578 0.289 1.036 6-b 1
670 2 Nov Mon 7:00 AM–8:00 AM 936 0.546 0.317 1.027 6-b 2
670 2 Nov Mon 8:00 AM–9:00 AM 935 0.548 0.314 1.027 6-b 3
680 8 Nov Mon 11:00 AM–12:00 PM 519 0.084 0.427 0.006 6-c 1
680 8 Nov Wed 11:00 AM–12:00 PM 504 0.073 0.438 0.003 6-c 2
639 4 Oct Thu 6:00 PM–7:00 PM 593 0.223 0.290 0.047 6-c 3

Note: GT, AOR, and AOC shown are weighted numbers. Bold values indicate which two parameters are employed to compute the ranking score.
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signal timing plan, causing an increasing percentage of vehicle
arrivals during red. Fig. 9(c) highlights the concerns at Intersection
680 on a Friday in October 2021, specifically during the midday
peak hours. Based on the PCD analysis, a significant number
of vehicles arrive during red under the existing signal timing
plan. Since Intersection 680 serves as a nexus between Preston
Road and Stonebriar Centre, during the midday peak hour, the
side street volume (547 vehicles per hour per lane) is nearly on
par with the main street volume (704 vehicles per hour). It was
believed that the current coordination plan overly prioritizes the
main street. A more equitably balanced timing plan could mitigate
this bottleneck.

Experiment IV: Cross Validate Ranking Results with
Independent Connected Vehicle Data

To cross validate the proposed method, the connected vehicle data
or the Wejo data set was adopted. The Wejo data represent a pen-
etration rate of 2% to 6% of the overall vehicle population in the
study area (Khadka et al. 2023). Typically, the CV data are abundant

and encompasses a vast geographical area. Due to its high-resolution
telematic nature, a few weeks of this CV dataset can amount to
hundreds of gigabytes. Therefore, a systematic approach is crucial
to effectively manage the data, ensure scalability, and eliminate
outliers.

In this experiment, polygons were first generated on the global
map system to represent the area of interest where the CV
data were relevant to this problem, as depicted in Fig. 10. These
polygons, established in the KML format, can be generated using
geographic information system (GIS) software such as Google
Earth or ArcGIS. Khadka et al. (2022) have introduced a scalable
framework for processing data aimed at filtering out irrelevant
details from the raw CV data, including waypoints that fall
outside the intended scope. Readers are encouraged to refer to
that source for a more comprehensive understanding of data
reduction.

CV data contains a lot of vehicle dynamics information, includ-
ing longitude, latitude, timestamp, and acceleration type. Among
these parameters, the vehicle instantaneous speeds were commonly
used to assess the level of intersection delay by calculating the

Fig. 7. PCDs for verifying dominating points in Case II: (a) GT versus AOC; (b) GT versus AOR; and (c) AOR versus AOC.
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difference between actual travel time and free-flow travel time.
Nonetheless, the vehicle speed samples varied significantly when
making turns, and vehicles often moved faster than the speed limit.
These identified features will make the delay estimation biased.

Therefore, the researchers selected the precisely measured vehicles’
control stops to indicate the mobility performance at intersections,
and the control stops, excluding those instantaneous stop-and-goes,
indicate heavy congestion.

Fig. 8. Pareto front result for Case III: (a) GT and NAOC; (b) GT and AOR; (c) AOR and NAOC; and (d) 3D Pareto plane visualization.

Table 3. Final ranking results for Experiment III

INT Time Arrival GT AOR AOC Fig. ID Rank

639 Nov Fri 5:00 PM–6:00 PM 530 0.337 0.390 0.037 8-a 1
639 Nov Fri 6:00 PM–7:00 PM 526 0.338 0.389 0.039 8-a 2
639 Nov Fri 12:00 PM–1:00 PM 520 0.242 0.451 0.004 8-a 3
675 Oct Fri 12:00 PM–1:00 PM 649 0.337 0.548 0.391 8-b 1
675 Nov Fri 6:00 PM–7:00 PM 656 0.400 0.484 0.495 8-b 2
675 Nov Mon 12:00 PM–1:00 PM 648 0.343 0.527 0.529 8-b 3
639 Oct Fri 12:00 PM–1:00 PM 520 0.242 0.451 0.004 8-c 1
639 Oct Mon 12:00 PM–1:00 PM 499 0.230 0.466 0.006 8-c 2
680 Nov Fri 5:00 PM–6:00 PM 593 0.305 0.489 0.175 8-c 3

Note: GT, AOR, and AOC shown are weighted numbers. Bold values indicate which two parameters are employed to compute the ranking score.
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The control stops were extracted from the CV trajectory data,
and the adopted threshold was that if a vehicle’s instantaneous
speed went slower than 5 mph or 7.33 fps, the subsequent waypoint
speeds were checked. A control stop was identified if the slow status
lasted longer than 6 s. The average was calculated after tallying all
the control stops at an intersection. Lastly, all the approaches at each
intersection are averaged, culminating in the overall average count
of stops for each intersection. As an example, the time-of-day aver-
age vehicle control stops at Intersection 675 are shown in Fig. 11.

According to the plot, the midday peak recorded the highest
average number of control stops, with the interval from 12 PM
to 1 PM registering an average of 3.75 stops per vehicle to cross
the intersection. In contrast, the morning peak hours seem to have
good mobility, with only 1.16 control stops per vehicle. The eve-
ning peak witnessed 2.9 control stops per vehicle. The trend in the
average number of stops correlates with the vehicle count trend
shown in Fig. 3(a).

After the CV-data-based MOEs were developed, the researchers
extracted the CV data covering the exact location and at the same

time from the regional CV data set. The experiment was performed
as follows:
1. Ranking the target intersections using multiple ATSPM MOEs

and the Pareto front method presented in this paper to identify
nine worst scenarios, three dominating points from each Pareto
front, consisting of Experiments I, II, and III.

2. Processing the CV data calculating the average control stops for
each scenario at the target intersection.

3. Using the Pareto front points as a reference, determine the aver-
age number of stops at the corresponding times and intersections
indicated by these nine dominating points.
Two sets of intersection ranking, one based on the ATSPM

MOEs and the other based on the CV data, are shown in Fig. 12,
and more details are in Table 4. In Fig. 12, the average stops per
hour for each workday at the five intersections are represented by
blue dots (taking blue points on Monday in Fig. 12 as an example,
the blue dots represent the hourly average number of stops from
all five intersections). The color areas—red, orange, and yellow—
denote the top 10%, 20%, and 30% worst scenarios based on the

Fig. 9. PCDs for verifying dominating points in Case III: (a) GT versus AOC; (b) GT versus AOR; and (c) AOR versus AOC.
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average number of stops calculated from the CAV dataset. Sub-
sequently, the identified Pareto front points (PFP) derived from
the proposed method are marked as red diamonds on the same plot,
aligned with the corresponding times. Even though the intersection
rankings based on two data sets (ATSPM data versus CV data) do
not (and should not) match exactly, it is apparent that the two in-
tersection rankings reveal consistency.

From Fig. 12 and Table 4, the following remarks can be made:
1. Most of the identified worst scenarios fell into the top 30% of

worst scenarios in which the CV data reported the highest con-
trol stops per vehicle.

2. One worst scenario out of the Pareto front in each experiment
does not fall within the top 30% of worst scenarios in which the
CV data reported the highest control stops per vehicle.
The two ranking methods and data sources are heterogeneous in

nature, and they are expected not to match exactly. While the CV
data were primarily collected with high fidelity, the inherent posi-
tioning error in the CV data may influence the result. Also, the lane-
width polygon may retrieve irrelevant CV data samples out of the
polygons. On the other hand, the ATSPM data collection in practice
faces many challenges such as clock synchronization among inter-
sections, detector accuracy, and reliability. These challenges may

Fig. 10. Generating polygons for an area of interest. (Image ©2023 Airbus.)

Fig. 11. Time-of-day average number of stops plot.
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also bring additional bias to the proposed framework. Nonetheless,
the ATSPM data quality and its impact on the proposed intersection
ranking framework is out of the scope of this paper. Despite these
differences and challenges, the two ranking methods indeed reveal
the same consistency.

Discussion

Three experiments reflecting agencies’ needs were conducted, and
one more experiment was conducted to cross validate results based
on an independent data source, the CV data set. Experiments I and
II aim to help agencies understand the spatiotemporal characteris-
tics of intersection bottlenecks based on the ATSPM MOEs under
different scenarios. The outcome provides decision support on sig-
nal timing improving gradually. Experiment III aims to help agen-
cies identify problematic intersections to prioritize their regional
intersection improvement plan. Experiment IV validated the pro-
posed method by cross validating the ranking results with another
ranking method based on the CV data set. Both methods and data
sets are being used in practice, and they showed acceptable con-
sistency in this experiment.

Conclusions and Future Work

In this paper, we explored using the automatically generated
ATSPM MOEs and multiobjective Pareto front method to rank
the time-dependent performance of target intersections and identify
the spatiotemporal characteristics of bottlenecks. The objective is to
facilitate agencies to identify problematic intersections and reduce

their efforts in visualizing the ATSPM MOEs. In congested urban
areas, bottlenecks at intersections often appear, disappear, and
reappear multiple times daily. The emerging ATSPM system is ad-
equate to identify these bottlenecks and their causes. Nonetheless,
after more and more intersections can generate the ATSPM data,
aggregating and visualizing the ATSPM MOEs at all intersections
is overwhelming agencies to exploit the benefits of ATSPM sys-
tems further. To address this issue, we develop an automated frame-
work to identify the most problematic approaches at intersections
based on the ATSPM MOEs. An add-on module was developed to
continuously generate the ATSPMMOEs rather than generate them
upon user’s requests. Four experiments were conducted in the case
study, including five intersections on Preston Road in Frisco, Texas,
to find the worst scenarios and possible mitigations. The results
were compared with the congestion ranking based on the CV data
and showed acceptable consistency.

In the future, we plan to (1) add new features to mitigate the
ATSPM data quality issue like missing and biased estimation;
(2) develop scalable computing methods to identify problematic
intersections among hundreds or thousands of intersections. The
overarching goal is to evolve the ATSPM system to better inform
and support decisions on arterial traffic management.

Data Availability Statement

Some or all data, models, or codes that support the findings of this
study are available from the corresponding author upon reasonable
request.

Fig. 12. Average number of stops based on day-of-week–hour plot.

Table 4. Final ranking results for Experiment IV

INT Time
Number
of stops

Average number
of stops

Pareto
front name

Rank by
PFP

Rank by
Wejo

Top
(%)

675 Thu 5:00 PM–6:00 PM 14.250 0.393 AOR NAOC 1 1 10
675 Thu 6:00 PM–7:00 PM 10.063 0.241 AOR NAOC 2 3 —
639 Thu 5:00 PM–6:00 PM 6.938 0.386 AOR NAOC 3 2 10
675 Thu 7:00 PM–8:00 PM 7.313 0.164 GT AOR 1 3 —
675 Wed 5:00 PM–6:00 PM 13.313 0.356 GT AOR 2 2 20
675 Tue 12:00 PM–1:00 PM 17.625 0.482 GT AOR 3 1 10
675 Thu 5:00 PM–6:00 PM 14.250 0.393 GT NAOC 1 2 10
675 Thu 6:00 PM–7:00 PM 10.063 0.241 GT NAOC 2 3 —
639 Wed 6:00 PM–7:00 PM 6.750 0.404 GT NAOC 3 1 10

Note: Bold values indicate which two parameters are employed to compute the ranking score.
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