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Abstract: Connected vehicle (CV) data in this paper refer to the in-vehicle telematic data, including trajectories and driving events (e.g., hard
braking) collected by vehicle manufacturers when vehicles are moving. Recently manufactured vehicles are equipped with cellular modems
and Internet of Things (IoT) devices to collect vehicle data. Such data, after removing personal information, are being redistributed to
third-party organizations. Compared to other probe vehicle data, the CV data has a higher penetration rate, ubiquitous coverage, and almost
lane-level positioning accuracy. These features pave the road for novel transportation applications in transportation planning and traffic
operations. In this paper, we represent a novel framework to estimate the regional link volumes based on the CV data and a deep neural
network (DNN) model. The training data are generated according to the link volumes (targeted model output) and the corresponding CV
counts (input features) at the same locations. The DNN model’s performance was compared with other estimation methods like linear
regression and random forest and showed superior performance. The trained DNN model takes ubiquitous CV counts from other locations
to estimate the corresponding link volumes. As a case study, the proposed DNN model was trained with a large training data set derived from
CV data and time-dependent link counts collected at over 1,200 locations on freeways in the Dallas Fort Worth, Texas, area. The results reveal
good accuracy and robustness. DOI: 10.1061/JTEPBS.TEENG-7536. © 2023 American Society of Civil Engineers.
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Introduction

Most recently manufactured vehicles are equipped with cellular
modems and global positioning system (GPS) modules. Automo-
bile manufacturers add these devices primarily to collect driving
behaviors and the corresponding vehicle behaviors. They investi-
gate these data to provide drivers with real-time service (e.g., road-
side assistance) as well as improve their products’ competitiveness
(e.g., fuel efficiency). These data were confidential in the past,
but some manufacturers decide to remove the private information
and redistribute the recorded vehicle trajectories and driving events.
Such emerging data sets are referred to as (internet-based) con-
nected vehicle data or CVD. Compared with the traditional fixed-
spot traffic detectors, the connected vehicle (CV) data almost cover
any major roads at any time. For example, our preliminary analysis
reveals that the CV data’s penetration rate in the Dallas Fort Worth

(DFW) area in Texas, the fourth largest metropolitan area in the US,
is 2%–6% on average. The CV data’s positioning accuracy can
mostly reach the level of lanes. Compared to the traditional GPS
data of probe vehicles or smartphones, the new CV data has ubiqui-
tous, continuous, and consistent coverage (CV traces were identi-
fied on each road segment in the DFW area). It also has a higher
data quality and the highest penetration rate (the number of vehicles
contributing data versus the total number of vehicles) of a single
mobility data source. The spatiotemporal information contained in
the CV data makes it possible to accurately estimate and visualize
traffic states.

Link volumes and speeds are two important components of traf-
fic states. While the low penetration rate will not affect the speed
estimation, the CV data cannot be directly used to estimate link
volumes. Nonetheless, the consistency and ubiquitous coverage
of the new CV data set provide promises to apply the CV data,
in conjunction with the infrastructure data, to link volume estima-
tion. A major contribution of this paper is that we present a new
framework to explore the potential of the new CV data in estimat-
ing the regional time-dependent link volumes. This framework
starts with generating a training data set by coupling over 1,000
locations where link volumes (i.e., 100% counts) were collected
using roadside traffic detectors with the corresponding connected
vehicle counts at those locations. Then various estimating tech-
niques, from linear regression to deep learning, are used to develop
traffic volume estimation models for all road links, especially those
links without infrastructure sensors. The proposed method provides
an alternative method to estimate regional travel demand (i.e., full-
spectrum link traffic volumes) to the traditional travel demand
modeling. It is driven by data analytics with few assumptions on
traveling behaviors.
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Literature Review

Traffic states, such as volumes, estimation, and prediction are im-
portant for proactive congestion management. From the traditional
regression models to the more recent deep neural networks, there
is a rich body of related literature. The methods described in
the previous literature can be categorized into two types in princi-
ple: parametric and nonparametric approaches. The literature is
reviewed and summarized accordingly.

Parametric Approach

Parametric approaches mostly depend upon certain physics and/or
mathematical models along with assumptions, such as prior distri-
butions or linearities, and so forth. Parametric models are based on
certain assumptions (e.g., the Gaussian process), thus the model’s
performance may not always be satisfying because such prior set-
tings may violate the truth. One of the most popular parametric
estimation methods is the autoregressive integrated moving average
(ARIMA) method, including a few variants. Hamed et al. (1995)
created the simple ARIMA model of order (0,1,1) to estimate
the traffic volumes in an urban arterial. The advantages of their
ARIMA model are straightforward and implementable, simply
requiring storing the latest anticipated error and the latest traffic
observation. Later, the same model was adopted in an improved
Bayesian combination model for short-term traffic volume predic-
tion with deep learning techniques. Ding et al. (2011) introduced
a new space-time ARIMA (STARIMA) model to predict the traffic
volumes of the next 5 min across multiple cities. Okutani et al.
used the Kalman Filter for traffic flow prediction (Okutani and
Stephanedes 1984). In this method, the model parameters were
improved using the latest observed prediction errors. Similar tech-
niques were extended with various new forms of Kalman filters like
adaptive Kalman filters (Guo et al. 2014) and extended Kalman
filters (Wang and Papageorgiou 2005). The accuracy for the ex-
tended forms of Kalman filters was reportedly better and suitable
for more scenarios compared to the basic Kalman filter. Tak et al.
(2016) used a modified K-nearest neighbor (KNN) approach, a
data-driven imputation method, to estimate road conditions accord-
ing to the geographical and temporal data sets. This approach can
estimate the missing data through imputation. With a historical data
set for 400 days, the proposed KNN approach outperformed the
analytical regression models in all scenarios, including those with
missing data. It suggests that the KNN model can offer a resilient
traffic state estimation with satisfying accuracy. The KNN model
can also be integrated with certain distributed computing tech-
niques to further improve the accuracy of traffic state estimation.
Yin et al. (2012) proposed a kernel regression spatial method to
incorporate the land use percentage in the estimation process. The
Bayesian particle filter (BPF) was utilized by Polson and Sokolov
(2018) to predict traffic regimes such as free flow, breakdown, and
recovery. This model can capture the traffic’s nonlinearities and dis-
continuities present in traffic flow data. The BPF method contains
two steps: (1) resample the current particles with a mixed predictive
distribution, and (2) use the conditional posterior distribution to
propagate traffic states (Polson and Sokolov 2018). This model is
flexible because it can minimize assumptions with respect to the
sensor locations for data collection.

Nonparametric Approach

The nonparametric approach is a statistical method that does not
assume the sample’s characteristics. No prior assumptions exclude
subjective bias about the data sets. Examples of nonparametric ap-
proaches include machine learning models, deep neural networks,

random forest search, K-nearest neural networks, and so forth.
Lv et al. (2014) used a deep architecture model trained with a
big set of traffic data to predict traffic flow in each link of a road
network. They used the stacked autoencoders (SAE) model. This
model considers the spatial and temporal correlation inherently,
which means the model can discover the latent traffic flow feature
that is nonlinear with higher estimation accuracy. Xu et al. (2020)
proposed a novel deep learning framework, referred to as the graph-
embedding generative adversarial network (GE-GAN) model, to
estimate the incomplete traffic state of a road based on data on its
adjacent link. Initially, a graph-embedding (GE) based model of a
roadway network is created. Then, using a generative adversarial
network (GAN), the represented graph is used to create real-time
information on road traffic conditions. GAN is applied to learn the
traffic state distribution. The outputs from the novel GE-GAN deep
learning network reveal high accuracies in estimating the traffic
state compared to other state-of-the-art road traffic estimation meth-
ods. Lu et al. (2021) proposed a combined method for short-term
traffic flow prediction that is based on a recurrent neural network
(RNN). The model consists of a simple ARIMA model combined
with a long short-term memory (LSTM) neural network. The
ARIMA model enables capture of the linear regression feature
of the traffic data and then, using the backward propagation LSTM
network, the nonlinear features of traffic data were captured. Fi-
nally, using dynamic weights of a sliding window, the estimated
values of these models were combined to obtain the output. Since
both linear and nonlinear aspects of the traffic flow data were stud-
ied during the model running process this makes this model much
more versatile compared to others. Sekuła et al. (2018) proposed a
method to estimate the historical hourly traffic volumes using a
feedforward neural network and vehicle probe data. They studied
the application of neural networks, vehicle probe data, and auto-
matic traffic recorder (ATR) counts to estimate the hourly volumes.
Several features like vehicle probe speeds, weather data, infrastruc-
ture data, and so forth were considered while calibrating the neural
network. Additionally, they combined the model with the existing
profiling method, which on average yields highly accurate data
compared to the profiling method by itself. Later, Zahedian et al.
(2020) added a few features to the same model called selected ATR
counts as an additional input. In this model they selected a subset of
available ATR counts and used it as an input variable in a neural
network model. By selecting ATR stations according to traffic mes-
sage channel (TMC) and training an artificial neural network with
their input ensures that there is a significant improvement in the
output estimated by the model. Duan et al. (2016) proposed a deep
learning model named denoising stacked autoencoders (DSAE)
for imputing the missing and corrupt data from the traffic counts.
This model has two basic blocks: autoencoders (AEs) and denois-
ing autoencoders (DAEs). The AE component of the model helps to
extract the features from the input data and DAE has the ability of
cleaning and denoising data. They trained the deep neural network
hierarchically using data from the vehicle detector station. The re-
sults show better performance while comparing their model output
with the output from other models like ARIMA and back propa-
gation (BP) neural network. Similar to this technique, Markov
chain Monte Carlo multiple imputations had been used to estimate
the missing data in intelligent transportation system data (Ni and
Leonard 2005). The method employs a Bayesian network to learn
from raw data and a Markov chain Monte Carlo methodology
to sample from the Bayesian network’s probability distributions.
This method of estimation deals with time series models. The
Bayesian model includes ARIMA as a regression model. The par-
tial data problem is then handled by solving complete problems iter-
atively and gradually until the method converges. Pun et al. (2019)
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proposed a multiregression technique by merging five tropical mea-
sures and road length to estimate the volume counts of the traffic.
The advantage of this technique is that it integrates the topological
and geometrical properties of the roadway segment, which helps in
estimating traffic flow more accurately. Six different measures like
degree, betweenness, closeness, page rank, clustering coefficient,
and road length were used for estimation purposes. Linear regres-
sion and random forest were considered during the formulation of
the regression model. Their findings imply that the combination of
topological and geometrical measurement outperforms in estimat-
ing traffic flow compared to a single method. The study is particu-
larly useful for those who are trying to estimate the traffic flow
based on correlations but has limited flow data with road network
features. Yaghoubi et al. (2021) introduced a traffic flow estimation
method using a widely available long-term evolution (LTE)/4G ra-
dio frequency performance measurement counter. The estimation is
based on a regression model using both classical and deep learning
methods. LSTM and random forest regression models have been
used. Using transfer learning techniques, they estimated the traffic
volume for places where traffic sensors were missing. This model
captures the traffic characteristics very well along with providing
enough information regarding traffic flow estimation. The experi-
ment was performed on a small scale (i.e., only six locations). The
author hypothesizes that with larger data and more location there is
a high possibility of improvement in the performance of estimating
(Yaghoubi et al. 2021). Heshami and Kattan (2021) applied a case-
based reasoning algorithm combined with the Kalman filter (KF) to
estimate the real-time queue length on a freeway off-ramp. The KF
here is used to fine-tune the final estimation obtained from the
model. The occupancy was used as the input and was obtained from
the roadside loop detectors installed on a ramp. They further used
sensitivity analysis to ensure the performance of the algorithm and
the results were promising in terms of estimating and predicting the
queue length to an accuracy of �3.15 vehicles in a 60-s time
interval.

Some of the research was also based on real-time traffic estima-
tion. Khan et al. (2017) developed a novel framework, which
combines connected vehicle technology (CVT) with artificial intel-
ligence (AI) together to estimate the real-time traffic state. The
assumption made for the CVT-AI model is that the vehicle onboard
units will transfer the connected vehicle data to the roadside infra-
structure. Distance headway, speed, and the number of stops were
considered as input for the model to estimate the density of a given
network. The result obtained from the experiments highly suggests
that the higher penetration rate of CV will yield more accurate out-
puts and vice versa. Li et al. (2021) used a multimodel machine
learning technique and Gaussian process regressor (GPR) for traffic
flow estimation. Their work shows how a machine learning ap-
proach based on aggregated data can be used to estimate traffic flow
based on floating car data (FCD) (i.e., Google maps data just using
a learned regressor). The different regressors were trained to fit into
the multimodel machine learning methods. In total, 19 regression
methods, such as linear regression model, regression trees, support
vector machines (SVM), the ensemble of trees, and Gaussian
process regression model, were used for estimation purposes. Com-
parison of results from single-model and multimodel variants
suggests that the multimodel outperforms the single-model variant
in generating precisely estimated traffic flow data. Antoniou et al.
(2013) used data-driven computational approaches for local traffic
state estimation and prediction. The technique they established in
their paper is ideal to be used in microscale traffic models, rather
than typical speed-density correlations. Their research includes
two data sets and surveillance data. Clustering and classification
techniques were used in their model. The classification technique

was performed with a single hidden layer of neural network. The
methodology is a two-stage process, with the first step assigning
an observation to a traffic state, and the second step using a state-
specific function to approximate the related speed. Since the sug-
gested model outperforms the current state-of-the-art model, it may
be useful when combined with other existing traffic state estimation
models. Liu et al. (2019) proposed a fully convolutional model
based on semantic segmentation technology referred to as the spa-
tiotemporal ensemble net. It is one of a few ensemble techniques
designed for the spatiotemporal data set. The ensemble technique
allows us to integrate multiple traffic state estimation and prediction
models to enhance the prediction and estimation accuracy. Five dif-
ferent models were combined to generate a single model. The mod-
els included KNN, linear regression, and a gradient boosting model
(GBM) called LightGBM with its different variants. The advantage
of the ensemble technique is that the multiple outputs of weak
learners can be blended using ensemble learning to create a supe-
rior learner that can outperform the individual model (Dietterich
2000). Chen et al. (2020) proposed an improved wavelet neural
network (WNN) prediction model to predict short-term traffic flow.
WNN is a forecasting model that has strong nonlinear processing
power, self-organization, and self-adaptation learning ability. To
optimize this network, an improved particle swarm optimization
has been used in its architecture. The input supplied to this network
is the data collected from the roadside detectors. The comparison
has been done between the actual wavelet neural network with im-
proved WNN and the results indicate that the improved version of
WNN has outperformed the traditional one. Part of the literature is
summarized in Table 1.

Compared with other similar work with other GPS trajectory
data sets (e.g., Sekuła et al. 2018), the proposed framework
needs much fewer input features to achieve better performance
[e.g., mean absolute error (MAE) and R2]. For example, Sekuła et al.
(2018) used over 20 input features and the penetration rate of their
GPS data set was lower than the CV data set we use in this paper. It
was also recognized that the model’s performance steadily improved
with the increase in the training data size. Therefore, we anticipate
that the proposed method will be capable of tackling even larger net-
works if there are sufficient data for the model training.

CV Data Reduction and Analytics

For an emerging data source, it is necessary to explore the CV
data’s features and cross-compare it with the existing traffic data
sources (e.g., roadside traffic counts). The first challenge of CV
data processing is that the size is much bigger than traditional
traffic data. For a metropolitan region, it can easily reach several
terabytes of text files every month. The data reduction and ana-
lytics are to develop new knowledge of spatiotemporal features
contained in the CV data sets in conjunction with the existing traf-
fic data. To tackle the CV data at a manageable level, the first step
is to reduce the CV data covering the whole region to smaller
areas of interest, such as intersections, corridors, or road segments
where traffic detectors are installed. Khadka et al. (2022) pro-
posed an efficient method to reduce the regional CV data to local
areas of interest. The size of reduced CV data is then suitable for
most data packages. Geofence creation depends on the applica-
tions. Fig. 1(a) demonstrates how an hour of regional CV data
was reduced around the locations with infrastructure detectors.
A small geofence along the road segments is generated around
each infrastructure detector, and only the waypoints within the
geofence are kept for further processing.
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Time of Day Connected Vehicle Counts on
Selected Links

The reduced CV data are around the infrastructure sensors, which
can report nearly 100% of passing vehicles and average speed peri-
odically. We first compared the time of day connected vehicle
counts on the corresponding road segments. Fig. 1(b) shows the
comparison of 15-min vehicle counts and estimated travel speeds
between the CV data and infrastructure sensor data at one location.
We compared 168 locations (i.e., geofences), and concluded that
the time of day (TOD) trend of CV counts and traffic counts as

well as the estimated speeds are highly consistent. This finding
paves the road for developing an estimation model to estimate link
volumes according to the CV counts.

CV Data Penetration Rates and Reliability

Sekuła et al. (2018) concluded that the penetration rate has a direct
correlation with the model’s accuracy. The outcome will be better
if the penetration rate increases. The experimented penetration
rate ranges from 0.78% to 4.56%. As a result, it is advised to have
data with greater penetration rates as much as possible instead of

Fig. 1. (a) Demonstration of CV data reduction to the areas of interest. (Imagery ©2022 Maxar technologies, U.S. Geological Survey, USDA/FPAC/
GEO, Map data © 2022 Google.); and (b) Comparison between CV data and infrastructural detector data.

Table 1. Summary of selected literature

Author name Type Methodology Data source/type Objective Strength

Hamed et al.
(1995)

P ARIMA Link counts Predict volume Model can be easily implemented and is
computationally tractable

Guo et al. (2014) P Adaptive Kalman filter Link counts Predict volume Improved adaptability when traffic is
highly volatile

Polson and
Sokolov (2018)

P Bayesian particle filter
(BPF)

Link counts Traffic state estimation Capture nonlinearities and discontinuities

Tak et al. (2016) NP K-nearest neighbor Dedicated short-range
communications (DSRC)
detectors for speed data

Traffic state estimation
using imputation
technique

Outperformed almost all the missing cases;
robust and accurate for over 400 days of
data

Xu et al. (2020) NP GE-GAN Fixed-spot traffic counts
[California Department
of Transportation
Performance Measurement
System (Caltrans PeMS)]

Traffic state estimation Average error (RMSE & MAE) is lower
compared to other models

Sekuła et al.
(2018)

NP Feedforward neural
network

GPS probe data Traffic
counts

Traffic flow estimation
(hourly)

Up to 24% better than the traditional
profiling method

Ni and Leonard
(2005)

NP Bayesian Network Video-based traffic counts Traffic state estimation Graphical comparison and quantitative
assessment reveal a very small imputation
error

ARIMA Model

Yaghoubi et al.
(2021)

NP Supervised regression
using deep learning

Cellular radio frequency Traffic flow estimation This model is not a perfect estimator, yet it
still captures the shape of the traffic very well

Heshami and
Kattan (2021)

NP Case-based reasoning
combined with the
Kalman filter

Traffic counts and
occupancies

Queue length estimation Results show an accuracy of �3.15
vehicles in the queue in 60-second time
intervals

Liu et al. (2019) NP Convolutional model
based on semantic
segmentation technology

GPS trajectory records Traffic state estimation Spatiotemporal ensemble net models can
be combined to improve prediction
accuracy

Note: P = parametric; and NP = nonparametric.
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considering the minimal penetration rate. We further compared the
link volumes and the CV counts near the infrastructure sensors at
all available locations and found that penetration rates of CV data
are mostly between 2% (15 percentile) and 6% (85 percentile) [see
Fig. 2(a)]. Given the penetration rate is relatively low, we further
analyzed the missing data issue (no captured connected vehicles)
during a day within 6 weeks of CV data in the DFW area (August
2021–September 2021). We find that most missing data occurred
between 11 p.m. and 5 a.m. the next day. This makes sense because
traffic is very light during that period. In particular, the highest
missing data rate occurred around 3 a.m. every day.

Methods for Map Matching

Map-Matching Algorithm for the CV Data Set

CV trips are represented with a series of waypoints (latitude, lon-
gitude, and time) and they do not contain road information. To
make them useful for understanding traffic conditions (e.g., CV
link counts), it is necessary to map each waypoint to road links
to reveal routes or paths. There are two challenges in this task:
(1) a road network may not cover all the CV movements; and
(2) various waypoints of a CV trip may be matched on different
links. To address these issues, the proposed map-matching algo-
rithm contains three components: (1) the shortest distance to a link
in the road network; (2) the difference between a waypoint heading
(direction) and road link heading; and (3) matched links of the last
few waypoints. To match the waypoints to the nearest link, we use
the minimal vertical distance between a waypoint and a road link.
The distance between a waypoint and a road link is the minimum
length required to move from a waypoint to the road link.

Let P1, P2 denote the starting node and ending node of a road
link l. The coordinates are ðx1; y1Þ; ðx2; y2Þ, respectively, and
ðx0; y0Þ denote a waypoint’s coordinates. Furthermore, let a, b,
and c denote the point-to-point distance between ðx0; y0Þ and
ðx1; y1Þ, between ðx1; y1Þ and ðx2; y2Þ, and between ðx0; y0Þ and

ðx2; y2Þ, respectively; L ¼ ðaþ bþ cÞ
2

. The distance d (see Fig. 3)

from ðx0; y0Þ to l can be calculated as

d ¼

8>>>><
>>>>:

b; if ðb2 ≥ c2 þ a2Þ
c; if ðc2 ≥ b2 þ a2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðL − aÞ × ðL − bÞ × ðL − cÞp

a
; otherwise

ð1Þ

Nonetheless, it is necessary to address the following issues
during the map matching.
1. Most links in a traffic model are curves, represented with a series

of short straight lines. It is necessary to break the curves into
short straight links to calculate the shortest vertical distances.

2. The CV data’s coverage is usually broader than the road net-
works of studies (e.g., freeways). Therefore, it is necessary to
filter out the CV waypoints that are not within the scope. To
address this issue, the map-matching algorithm will check each
waypoint’s distance to its nearest link. If the shortest distance is
longer than a threshold (e.g., 3-lane width), then this waypoint is
considered out of scope and ignored (the crossed waypoints in
Fig. 3). If a CV trip leaves the road network and then reenters
from a downstream link later, it is considered two separate
shorter CV trips.

3. Other than the vertical distances, the map-matching algo-
rithm will also compare the headings of a waypoint and road
links. It will further compare the headings of the adjacent way-
points to make sure a correct link is matched. These consid-
erations are particularly important when vehicles are passing
links near multideck interchanges, overpasses, and underpasses.
(see Fig. 3).
For additional details on the customized map-matching algo-

rithm readers are recommended to read Khadka et al. (2022).

Performance Evaluation of the Map-Matching
Algorithm

To create a benchmark to evaluate the performance of the map-
matching algorithm, 80 geofences were created on freeways in
the DFWarea. Within each geofence, we examined all passing con-
nected vehicles in 24 h and aggregated the CV counts every 15 min.
The CV trips in the geofences are manually verified and so they are

Fig. 2. CV (a) data penetration rate; and (b) missing data percentage.

Fig. 3. Illustration of customized map-matching algorithm.
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considered the ground-truth CV counts. The CV counts are then
calculated again using the proposed map-matching algorithm on
the same link segment and at the same time. The manually observed
CV counts and the corresponding CV counts reported by the map-
matching algorithm turn out almost the same. Fig. 4 demonstrates
strong consistencies at two selected locations. Therefore, it is con-
cluded that the proposed map-matching algorithm can accurately
estimate the CV counts on all links in the DFW area.

Estimating Link Volumes with the CV Link Counts

Even though most metropolitan areas in the US have almost
deployed infrastructure sensors on all freeways to continuously
collect link counts and speeds, the coverage is still very small com-
pared with the overall freeway miles. By contrast, the CV data al-
most cover all the roadways with a low penetration rate. Given the
high TOD consistency between link traffic counts and CV counts, it
is possible to develop an effective model(s) to estimate counts on all
road links with the CV counts. In this paper, we explore three types
of estimating techniques: linear regression model, deep neural
network model, and random forest regression model.

Linear Regression Models

The linear regression (LR) model is widely used to build a system
that takes an input vector x ∈ Rn to estimate and/or predict a scalar
value of output y ∈ R. The linearity is labeled because y is a linear
function of in the input. Let ŷ denote the value that the linear re-
gression model should output, and the out can be expressed as

ŷ ¼ w⊺x ð2Þ
where ω ∈ Rn = vector of parameters in response to the input
vector x.

The parameters ω are to control the performance of the linear
regression model. Specifically, ωi is the coefficient for the input
feature xi before all the features are added up to get the output sca-
lar y. ωi determines the importance of feature xi and its contribution
to the output. Therefore, ω is also called weight in other literature. If
ωi is zero, then the corresponding feature xi does not contribute to
the output. We first explored the performance of linear regression
modeling for this application because the linear regression models
are straightforward and easily interpreted. Thus, we should always
prefer the linear regression model if its performance is satisfying.
The model development is divided into three sequential steps:
(1) data preparation, (2) model calibration, and (3) performance
valuation.

Testing Data Preparation
The data source is the connected vehicle data, distributed by Wejo
Data Service Inc. A data service company based in United Kingdom
whose business is to process and clean networked vehicles’ telemat-
ric data and re-distribute to the third-party organization. The data
include the following relevant features for this context:
Inputs Features (x).
• Time-dependent connected vehicle counts at areas of interest:

Each connected vehicle trip has a unique identifier and is com-
posed of a series of waypoints. Each waypoint is composed of
three elements: latitude, longitude, and time stamp denoted as
ðlat; lon; tÞ. If a trip’s waypoints are plotted on a map engine,
we can see the overall path.
Note that the waypoints do not contain the road information and

therefore it is necessary to match the waypoints to the correspond-
ing road links and generate a time-dependent road link sequence for
each trip (a.k.a., map matching).

The selected network is the freeway network in the Dallas
Fort Worth, Texas, area, skimmed from the travel demand models
maintained by the North Center Texas Council of Governments
(NCTCOG). The time-dependent link sequences are further aggre-
gated around the areas of interest with small geofences. In this ap-
plication, the areas of interest are near the infrastructure sensors
where 100% link counts and travel speeds are available.
• Time factors: Includes the time of day, day of the week, month

of the year, and so forth. These data are included in the delivered
CV data set.

• Vehicle’s instantaneous speeds and headings: This information
is derived from the waypoints. The headings are used to improve
the accuracy of the map-matching algorithm and the speeds are
used to estimate the link speeds.

• Road information at sensor locations: Includes the number of
lanes and free-flow speeds.

Output Scalars (y).
• Infrastructure sensor counts via roadside sensors: Local agen-

cies are continuously collecting vehicle counts and speeds at
hundreds of locations. The local agencies have also verified
the reported vehicle counts with recorded videos and the infra-
structure sensor data are considered to capture 100% of vehicles
passing those sensors. In total, we included 146 locations in the
DFWarea, each of which will report the vehicle counts and aver-
age speeds every 15 min. The total number of training records
is 14,016.
While the CV counts are naturally suitable for the input vectors

of regression models, we had to encode those narrative features
(e.g., Monday) as model inputs. For instance, we numbered the
day of the week from 1 (Monday) to 7 (Sunday).

Fig. 4. CV counts comparison between manually observed and map-matching reported.
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Model Calibration
Different weights will change the LR model’s performance. One
popular way of measuring the performance is to compute the mean
squared error (MSE) of the model on the test set, given m testing
samples: ðxi; yiÞ ði ¼ 1; 2; : : :mÞ

MSE ¼ 1

m

X
i

ðbyi − yiÞ2i or MSE ¼ 1

m
kŷ − yk2 ð3Þ

To minimize the mean square errors for the LR models, we can
make the first-order differentiation concerning the weights w and
make the gradient equal to 0 or ∇wMSE ¼ 0

∇w
1

m
kŷ − yk2 ¼ 0 ð4Þ

⇒∇w
1

m
kŷ − yk2 ¼ 0 ð5Þ

⇒∇wðXw − yÞ⊺ðXw − yÞ ¼ 0 ð6Þ

⇒∇wðw⊺X⊺Xw − 2w⊺X⊺yþ y⊺yÞ ¼ 0 ð7Þ

⇒2X⊺Xw − 2X⊺y ¼ 0 ð8Þ

⇒w ¼ X⊺y
ðX⊺XÞ ð9Þ

Solving the weights for the LR model with Eqs. (4)–(9) is fast
and the LR model can be further extended from the standard linear
regression model to quadratic or cubic LR models by introducing
the intercept as well as x2 and x3 in the form of ŷ ¼ bþ w1xþ
w2x2 þ w3x3. The polynomial form of the LR model will increase
the capacity of estimation but excessive high order may also create
a possibility of overfitting.

Performance of Various LR Models
Various combinations of input features and extensions are tested,
from over 10 input features to only CV counts, from standard LR
models to extended polynomial LR models. We concluded that the
CV data alone bring most of the contribution to the LRmodel based
on the analysis of R2 and covariance matrix. One of the reasons
for this phenomenon is that the data sets are time-dependent and
have automatically reflected the time factors. The diversity of infra-
structure features is also limited because we focus on major free-
ways where free-flow speeds and the number of lanes are similar.
Among all the data records, 80% were used for model calibration
and the remaining 20% were used to examine the performance
of LR models. Fig. 5 shows two calibrated LR models. R2 are

calculated as R2 ¼ 1 − kŷ − y2k
ky − ȳ2k . The MAE is calculated as

MAE ¼ 1
n

P
n
n¼1 jYi − Ŷij, where N is the number of data points,

Yi is the observed output values, and Ŷi = predicted value.
In summary, the LR models can overly estimate the time of

day trend of link counts. At a few locations, the estimation errors
are up to 200% with truncations. This may generate misleading
information in practice. Since the whole model in linear regres-
sion is given a single weight, the model may be unable to ac-
curately predict how traffic flows during peak or off-peak hours.
Due to this issue, a single-weight model, such as linear re-
gression, may not be able to support the estimation well. Addi-
tionally, it seems ineffective to capture the other input features
contained in the CV data, even after those input features are
transformed to have better mathematical characteristics. As such,
we decided to further explore the potential of deep learning
models to further improve the accuracy of the link count estima-
tion. Note that we do not consider the penalty of large weight
values because the final LR models only have one input feature,
the CV counts.

Fig. 5. Performance of the selected linear regression models.
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Deep Neural Network Models

The objective of using machine learning (ML) models is to further
improve the accuracy of link count estimation. In particular, we
wish more features other than the CV counts can contribute to
the estimation accuracy. We explored developing a deep neural net-
work (DNN) model to approximate the target function with an
approximation y ¼ fðx;wÞ. The DNN model’s performance is sen-
sitive to the parameters w. To define a DNN model, we need to
consider the following elements.

Cost Function
A training data set, which is considered ground truth, is used to
evaluate the DNN model with a general cost function, such as the
MSE. The cost function must be sensitive to the w values. In most
cases, minimizing the cost function value can be achieved by seek-
ing where the gradient of the cost is zero. For estimation problems,
the MSE is commonly selected as the cost function.

Output Units
We used linear output units. Given features h, a layer of linear
output units produces a vector in the form of ŷ ¼ W⊺hþ b. In other
literature, it is also written as

aðlþ1Þ
i ¼ fðwðlþ1Þ

i aðlÞ þ bðlþ1Þ
i Þ ð10Þ

where aðlþ1Þ
i = output from the ith unit (also known as activation

function or neuron) in layer lþ 1; aðlÞ = vector of unit outputs from

the last layer l; and bðlþ1Þ
i = bias associated with each unit in

each layer.
For large DNN models, it is necessary to avoid overfitting by

dropping out certain intermediate neurons from each step as well
as the corresponding weights. This idea is inspired by Hinton et al.
(2012). Its roots are in the stochastic optimization to leave a local
minimum; so, Eq. (10) can be further modified to

aðlþ1Þ
i ¼ fðwðlþ1Þ

i rðlÞaðlÞ þ bðlþ1Þ
i Þ ð11Þ

where rðlÞ ∼ BernoulliðpÞ; and p = dropping rate.

Hidden Layers
Design of hidden layers primarily distinguish one DNN model
from another. It includes the selection of activation functions, con-
nection between layers, and the number of neurons in each layer.
The hidden layers can be described to compute an affine transfor-
mation z ¼ W⊺xþ b and then applying an element-wise activation
function gðzÞ.

In this paper, we adopt three fully connected hidden layers. Each
hidden layer contains 50 neurons with the rectified linear activation
function (ReLU). The ReLU is a piecewise linear function that will
output the input directly if it is positive, otherwise, it will output
zero. The ReLU function and its derivative are shown in Eq. (12).
The ReLU function gains popularity because of its computing ef-
ficiency in practice. The neuron is automatically deactivated and
ignored once the input value becomes nonpositive

RðzÞ ¼
�
z z ≥ 0

0 z ≤ 0
R 0ðzÞ ¼

�
1 z > 0

0 z < 0
ð12Þ

Training Algorithm
We adopt the adaptive moment estimation (Adam) algorithm,
a stochastic gradient-based optimization that can handle high-
dimensional search space in nonconvex optimization problems
(Kingma and Ba 2014).

In summary, the designed DNN network is illustrated in Fig. 6.

Data Preparation for the DNN Model

Inputs Features (x).
• CV vehicle counts according to the waypoints: Such data covers

the entire DFW area. They are reduced to 90 small areas where
the infrastructure sensors were installed. The penetration rate of
the connected vehicle counts is around 3%–5% of the total ve-
hicle counts by the infrastructure sensors. The CV counts are
highly correlated with the infrastructure traffic counts.

• Directions: Using the same data set, the direction of the vehicle
can be identified. Direction includes east (E), west (W), north
(N), and south (S). With the one-hot encoding method, all four
directions were converted into four different input features suit-
able for the DNN model.

• Time factors: Time of day and day of the week have a substantial
impact on traffic counts. Therefore, the temporal traffic patterns
such as time of day (1–24 h), day of the week [1 (Monday)–7
(Sunday)], and month of the year [1 (January)–12 (December)]
are considered for each data point. Since these features are
cyclic numbers, we use the one-hot encoding method again to
encode. All these time-dependent data are converted into six
input features.

• Vehicles’ instantaneous speeds: The vehicle’s average speed
was calculated according to the reported speed samples. Only
one feature is used to estimate observed 15 min traffic counts,
the average speed.

• Road information at sensor locations: includes the number of
lanes and free-flow speeds.

Output Labels �y�. Infrastructure sensor counts via the roadside
sensors: The local agency provided us with 100% traffic counts
at 90 locations, which are considered the ground truth for training
and evaluating the DNN model. The DNN model is to output the
estimated 15-min vehicle counts at selected locations and then
compare them with the ground-truth traffic counts. Note that we
only focus on the freeway links because all the infrastructure
sensors were deployed on freeways. There are 14,017 training data
records and each record contains 12 input features (x) and one
observed link count (y); 80% of records are used for training
and the remaining 20% of records are used for testing. Each point
corresponds to the 15-min volume measurements taken at 90 loca-
tions, each of which counts both directions of traffic.
One-Hot Encoding Method for Classified Data. Variables con-
taining limited values are referred to as categorical data. For exam-
ple, a direction variable could have the values north, east, south, and
west. Categorical input features must be mapped to integers for
the DNN model. To ensure the cost function and optimization al-
gorithm are sensitive to the changes to categorical features, it is
necessary to transform them with the one-hot encoding method.

Fig. 6. Structure of the proposed DNN model.
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This method will transform each categorical value into a new cat-
egorical column and give a binary value of 1 or 0. A binary vector is
used to represent each integer value. The index is designated with
a 1 and all the values are 0. For example, for a direction feature,
we can define a quadlet to represent north (1,0,0,0), east (0,1,0,0),
south (0,0,1,0), and west (0,0,0,1). As a result, one categorical fea-
ture will become four features after the one-hot encoding. One-hot
encoding may significantly increase the number of features.
Encoding the Cyclic Data Based on Trigonometry. Day of
the month, day of the week, day of the year, and other time-based
characteristics have a cyclic nature and various feature values. The
day of month feature of one-hot encoding yields a 30-dimensionality
vector, while the day of year yields a 366-dimensional vector. One-
hot encoding of these attributes is inefficient because it may result in
a curse of dimensionality. To address this issue, we encode the cyclic
temporal features with the sin and cosine values of the features using
the basic concept of trigonometry. Instead of employing one-hot en-
coding to create a 7-dimensionality feature vector, a 2-dimensional
transformed feature vector will now be used to represent the full
feature.
Features Importance Analysis. Even if the CV data set contains
many properties, not all of the features are important. Some data
might not be related to the result that we are attempting to obtain.
Therefore, it is necessary to investigate the importance of each fea-
ture. The select KBest technique for feature selection (James et al.
2013) was utilized to investigate the feature importance. For this
regression model, the F-value between label/feature was calculated
using the f regression scoring function. The feature importance
study for all the variables shown in our data set is represented

in Fig. 7, clearly showing that only CV counts, the number of lanes,
measured speed, latitude, and longitude are important. As a result,
the remaining features are ignored in the DNN model because they
are unlikely to affect the estimating performance.

Performance of the DNN Model
The DNN model is first trained with the training data set, 80% of
which are used for training, and 20% are used for testing. Fig. 8
shows the loss function value and MAE value changes over epochs.
We can see there is no significant overfitting problem because
the training data’s loss function and MAE values do not increase
over iterations. Fig. 9 shows the estimated link volumes as opposed
to the observed link volumes of the testing data sets and the dis-

tribution of the estimation error rate

�
estimated − observed

observed
%

�
.

Random Forest Regression Model

We also explore the popular random forest (RF) regression model
to estimate the link counts. It is a nonparametric machine learning
algorithm suitable for the classification and regression of high-
dimension data. The RF algorithm is due to Breiman (2001). The
standard RF regression model can be estimated as follows:
• Assume the training data set contains M records (rows). Each

record contains N input features and one output (N þ 1 col-
umns). Let m denote the number of sample records ðm ≤ MÞ,
n denote the number of features ðn ≤ NÞ to build subtrees; K
denote the number of independent trees; and J represent the
maximum depth (branches) of each tree. The branching efforts
stop if a leaf node only contains one sample and, therefore, the
number of branches of each tree j ≤ J. The estimated value of
each node will be the average output scalar.

• Using the bootstrap sampling technique (i.e., putting back
selected samples and features each time for resampling), we use
m samples (rows) and n features to generate K independent
decision trees with j branches. When branching, the RF algo-
rithm will choose one of the remaining features with an appro-
priate threshold to generate the maximal information gain or
the maximal reduction of uncertainty. The information gain is
calculated as

Ebefore − Eafter ¼
�
−
�XC

i

pilog2pi

��

−
�
−
�XC1

i

pilog2pi

�
−
�XC2

i

pilog2pi

��

ð13Þ

Fig. 7. Feature importance analysis.

Fig. 8. Evolution of DNN model training: (a) evaluation of loss function value; and (b) evaluation of MAE values.
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where C = all the samples in the parent node; and C1, C2 = the
samples after splitting. So C ¼ C1 þ C2.

• For a new test data sample, it will go through all the independent
decision trees until it reaches a leaf node. Then the estimated
output scalar of that decision tree will be the average output val-
ues of the training data samples in that node. Each decision tree
will generate an estimated output and the final estimated output
for a test data sample will be the average of all decision trees’
output values.
In this experiment, we use the same data set for the DNN es-

timation model. The training and testing data sets are 80% and
20%, respectively. After evaluating a different number of trees,
we decided to generate 50 independent decision trees for the regres-
sion model, the minimal number of samples in the node for further
splitting is 2.

Fig. 10 shows the performance of the RF regression model on
the testing data set. We can tell that the RF regression method can
provide decent link count estimation. However, it has a lower R2

value than the LR regression models. In addition, the RF regression
model cannot estimate the output values larger than those in the
training data set while the LR regression model can well extrapo-
late. Therefore, we consider the RF regression model inferior to the
aforementioned LR regression models.

Discussion

According to the R2 and MAE in each model, the DNN model
seems to outperform the LR and RF models. Table 2 displays all

of the model’s results in tabulated form. Table 2 makes it quite
evident that DNN outperforms all other models in terms of perfor-
mance. Among all the models, the DNNmodel has the lowest MAE
and highest R-squared value.

The DNN model’s performance is expected to be further im-
proved if more infrastructure data (e.g., link volumes) are available.
Therefore, we prefer the DNN model over the other two models.
Nonetheless, it is noticed that all three models may generate outlier
volumes whose error rates are more than 200%. Large error rates
could be caused either by the inefficiency of the DNN model or just
by the malfunctioned infrastructure sensors. Therefore, it will be
complicated to solve only through modifying the DNN model.
It is recommended to provide an upper bound for volume estima-
tion. For instance, we assumed a 2% penetration rate is the minimal
penetration rate and 6% is the maximal penetration rate according
to Fig. 2(a). Then the upper bound of link volumes can be set as the
CV counts divided by 2%. Any estimated link volumes beyond the

Fig. 10. Performance of random forest regression method.

Table 2. Comparison of different models based on MAE and R-squared
values

Models MAE R-squared value

Linear regression 162 0.72
Polynomial linear regression 155 0.74
Random forest 184 0.68
DNN 131 0.93

Fig. 9. Performance of the selected linear regression models: (a) DNN regression method; and (b) DNN error rate.
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upper bound value should be either truncated as the upper bound
value or ignored.

Case Study: Estimate Time-Dependent Link
Volumes with the Connected Vehicle Data in the
Dallas Fort Worth Area, Texas

After comparing the three estimation models in the section “Esti-
mating Link Volumes with CV Link Counts,” we conclude that the
proposed DNN model is the best method to estimate the link traffic
counts with the connected vehicle data. Since the CV data are
ubiquitous, it is possible to estimate full-network link volumes us-
ing a well-trained DNN model and the corresponding connected
vehicle counts.

Regional Freeway Link Volumes Estimation Using
the DNN Model

The freeway network in the DFWarea contains 5,053 freeway seg-
ments and ramps. To prepare the training data sets for the DNN
model, we collected link counts from 1,063 freeway locations dur-
ing 20 workdays in September 2021 (See Fig. 11 for infrastructure
detector locations). The CV data were first matched to those loca-
tions to generate the corresponding CV counts. The link counts and
CV counts were archived every 15 min; each location-day (one lo-
cation per day) data contain 96 data records, including the traffic
counts per 15 min as well as the number of lanes and speed limits.
After removing outliers, the total number of training data records
was 1,913,856. The input features include all those in the section
“Deep Neural Network Models” plus three new features: the num-
ber of lanes, speed limits, and counting station IDs. The number of
lanes and speed limits are geographic features, and the counting
station ID is to facilitate the DNN model to distinguish the training
data among the counting stations.

The estimating procedure is summarized in Fig. 12. We put
aside the link counts on September 29 as independent testing data
to validate the performance of the DNNmodel. The testing data sets
contain the TOD link volumes, which are used as the ground truth
to compare with the corresponding estimated TOD link volumes
according to the CV counts.

24-h Estimated Link Volumes Analysis and
Validation

To predict a link volume, we first calculate the CV counts on that
link with the map-matching algorithm. The CV count, in conjunc-
tion with other spatiotemporal features, is input into the calibrated
DNN model. The DNN model will then output the estimated value
of link volume. At each location, 96 time-dependent link volumes
were generated for each day (15-min interval).

The 15-min link counts collected via the infrastructure sensors at
1,063 locations on September 29, 2021, were used as the ground truth
to validate the estimated link counts by the DNN model. Fig. 13 re-
veals strong consistencies between the estimated link volumes and the
actual link volumes. According to Fig. 16, about 69% of estimated
link volumes are within the 20% range of error rate e, defined as

e ¼
�
estimated counts − observed dounts

observed counts

�
% ð14Þ

In the preliminary experiments, we gradually increased the
number of infrastructure sensor locations and the number of days
to examine the impact of training data size on the model’s perfor-
mance. It was recognized that the DNN model’s performance
steadily improved with the increase in training data set size. As
such, it is anticipated the model’s performance would be further
improved if more locations of infrastructure sensors over more days
are used for the training data set. Fig. 14 shows a comparison of
time of day link volumes (observed versus estimated) at four ran-
domly selected locations. They all show strong consistency.

Peak-Hour Estimated Link Volumes Analysis and
Validation

In practice, transportation planners often focus on the link volumes
during peak hours. Therefore, we further conducted a time of day
model performance analysis. The error rates of the testing data set
(September 29, 2021) were averaged every 15 min. Fig. 15(a) shows
that the error rates were low (less than 20%) during the daytime but
were high during the off-peak hours at late night and early morning.
Fig. 15(b) is the time of day average 15-min (observed) link counts
from the testing data set. According to Eq. (14), the error rate will
tend to be large if the denominator (observed link counts) is small,
bringing bias to the overall performance evaluation.

Fig. 16 shows the error rate distribution during morning and
evening peak hours compared with the 24-h error rate distribution.
We can tell the model’s performance is better during peak hours.
Specifically, 76% of error rate samples are within the 20% error
range during the morning peak hours and 78% of error rate samples
are within the 20% error range during the evening peak hours.

Fig. 12. Framework of TOD link volume estimation with the regional
CV data. TD = travel demand.

Fig. 11. Dallas Fort Worth Road network and counting stations.
(Data from NCTCOG, n.d.)

© ASCE 04023015-11 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2023, 149(4): 04023015 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pe
ng

fe
i L

i o
n 

01
/2

7/
23

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



By contrast, only 69% of 24-h error rates are within the 20% range
of error rates.

Discussion

• It is noticed that including the geolocations (latitude, longitude)
of infrastructure sensors does not improve the performance sig-
nificantly. The rationale is that two adjacent infrastructure sen-
sors are not necessarily consistent in terms of traffic volumes
(e.g., freeway mainlines and the frontages roads). Our prelimi-
nary experiment results also show that including the geolocation
information does not bring benefits.

• It is noticed that the configuration of input features is critical to
ensuring the performance of the DNN model. Human experien-
ces are important to designing the input features of the training
data set. We compared two options of input features: (1) includ-
ing the number of lanes as one input feature and using the total
link count as the output scalar; and (2) not including the number
of lanes and using the link counts per lane as the output scalar.
The experiment results reveal that the DNN model under the
second option significantly outperforms the DNN model under
the first option on the independent testing data set.

• For map matching, it is necessary to break long and/or curvy
links into short straight-line links to calculate the vertical dis-
tances from waypoints to links. Otherwise, it would be hard

Fig. 13. Performance of link volumes estimation at four new locations.

Fig. 14. Comparison of time of day link volumes at four new locations.
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to precisely match CV counts to links in which vehicles merge
or diverge.

• A few days of link volumes at some locations were found to
have large error rates in the testing data set. To mitigate this
issue, we can set upper and lower bounds of link volumes as
the connected vehicle counts divided by 2% and 6% penetration
rates, respectively.

Conclusions and Future Work

In this paper, we present a new framework for regional travel de-
mand estimation, powered by the merging of connected vehicle
data and machine learning techniques. By comparing three similar
regression methods, we conclude that the DNN model can best es-
timate the link volumes according to the captured link CV counts.
We also present a customize map-matching algorithm to map each
CV trip to the freeway network. This method enables us to estimate
the time-dependent CV counts on all road links. Using the CV data
in the DFW area for September 2021 and the regional freeway net-
work, we conducted a case study to estimate the regional travel
demand on freeways and then validate with independent testing
data set. The results are promising.

The proposed framework provides an alternative, data-driven
approach for regional travel demand forecast. Compared with the
classic four-step travel demand forecast, this new method contains
few assumptions about traveling behaviors. It also exploits the
potential of the CV data set in transportation planning and travel
demand forecast.

This paper focuses on (historical) traffic volume estimation. In
the future, we plan to explore the short-term prediction of regional

travel demand (e.g., the next 15 min) based on a longer period of
CV data set because of its importance to congestion management
and reduction of air pollution.

Data Availability Statement

Some or all data, models, or code used during the study were pro-
vided by a third party. Direct requests for these materials may be
made to the provider as indicated in the Acknowledgments.

Acknowledgments

This research is supported by the project “Embracing emerging
traffic big data (connected vehicle data) in smart city applications
to improve transportation systems efficiency, safety, and equity,”
sponsored by Center for Transportation Equity, Decisions, and
Dollars (CTEDD), a USDOT university research center at the
University of Texas at Arlington. It is supported by the University
Partnership Program at the North Central Texas Council of
Governments (NCTCOG). The connected vehicle data were dis-
tributed by Wejo Data Service. The authors also thank Mr. Arash
Mirzaei, Dr. Hong Zheng, and Dr. Gopindra Nair of NCTCOG
for their suggestions and comments. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the official
views or policies of the aforementioned organizations, nor do the
contents constitute a standard, specification, or regulation of these
organizations.

Fig. 15. Time of day model performance analysis.
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